What is the Incidence of Sleep Apnea in Type 2 Diabetics in Japan?

-JEDAS Study Report - (JEDAS: Japanese Epidemiology DM and SAS)

Shunichi Tanaka, Yasuo Akanuma, Yasuo Ohashi, JEDAS Study Group

Background

- 1. Stress associated with sleep apnea syndrome (SAS) has recently been brought to attention as a risk factor for abnormal glucose metabolism and insulin resistance. (Naresh et al. Am J Epidemiol. 2004)
- 2. Compared with non-diabetics. prevalence of SAS is known to be higher in diabetics in the U.S.A. and Europe (15.6% vs 23.8%). (Resnick et al. Diabetes Care, 2003) In contrast, SAS prevalence among Japanese diabetics is unknown.
- 3. SAS is strongly associated with obesity. A large percentage of Japanese type 2 diabetics is leptosomatic compared with their counterparts in the U.S.A. and Europe
- 4. We conducted a multicenter crosssectional epidemiological study in outpatients with type II DM to estimate the prevalence of SAS among DM.

Objective

- To estimate prevalence of SAS among type 2 diabetics
- 2. To explore association between SAS and diabetic pathology such as insulin resistance in type 2 diabetics

Materials & Method

information for the last 3 months

study (epidemiological study)

Measurements/data investigated

Inclusion criteria: outpatients with type 2 diabetes

(according to the diagnostic criteria of Japan Diabetes

Exclusion criteria: patients without diabetes treatment

Number of patients analyzed: consecutive 904 patients

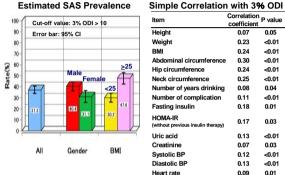
Multicenter prospective cross-sectional observational

measurements, vital signs, blood biochemical test (ex.

Nocturnal pulse oximetry to estimate presence of SAS

· Demographic data, history of diabetes, physical

past/current disorders and complications


FBG, fasting insulin, HbA₁₀), urine test, lifestyle,

Subjects

Society)

Statistical analysis

Study design

Multivariate Analysis Model (proportional odds model)

Statistically significant explanatory variables (statistical significance based on outcome variables categorized by SAS severity [3% ODI of < 5, 5 < and < 15 or 15 <])

Physical function

Explanatory variable	Estimate	stimate SE P value Odds ratio 95		95%	% CI						
Age	0.02	0.01	<0.01	1.02	1.01	1.04					
Sex	-0.44	0.17	0.01	0.64	0.46	0.90					
BMI	0.14	0.02	<0.01	1.15	1.11	1.20					
Heart rate	0.01	0.01	0.03	1.01	1.00	1.03					
Creatinine	0.86	0.34	0.01	2.37	1.21	4.65					
Hypertension	0.42	0.15	0.01	1.52	1.13	2.03					
Odds ratio per explanatory variable unit											
Explanatory	Unit		Odd	ls o	95% CI						
variable	0	Unit		0	3370 CI						
Age	1	10		7 1.12	1.45						
Sex	Male vs	Male vs Female		4 0.46	0.90						
BMI		5		1 1.65	2.46						
Heart rate	1	0	1.1	4 1.01	1.28						
Creatinine	0	0.5		4 1.10	2.16						
Hypertension	Voc	vs NO	1.5	2 1.13		2.03					

678

190

163

739

874

P value N

0.05 849

<0.01 900

∠0 01 849

<0.01 818

∠0 01 818

<0.01 818

0.04 627

<0.01 896

<0.01 897

<0.01 899

0.01 738

Correlation

coefficient

0.07

0.23

0 24

0.30

0 24

0.25

0.08

0.12

0.13

0.09

-0.12

- Summary 1. Estimated SAS prevalence among diabetics was 37.3% (95% CI. 0.34 to 0.41) with a cut-off value of 3% ODI > 10.
- 2. Estimated SAS prevalence among diabetics with BMI < 25 was 30.2% (95% CI. 0.26 to 0.34) with a cut-off value of 3% ODI > 10.
- 3. Correlation with SAS severity (3% ODI) was seen in (1) physique data (height, weight, BMI, abdominal circumference, hip circumference, neck circumference, number of years drinking), (2) diabetes-related data (number of complication, fasting insulin, HOMA-IR), (3) renal function (creatinine, uric acid), (4) circulatory dynamics (blood pressure, heart rate) and (5) guestionnaire result (Physical Functioning in SF-36).
- 4. The multivariate analysis using a proportional odds model showed SAS severity (3% ODI) was related with age, sex, BMI, heart rate, creatinine and hypertension.

Discussion

- 1. As in the U.S.A. and Europe, SAS prevalence among Japanese diabetics is higher compared with general population (1.7%; Kayukawa et al. Biomedicine and Therapeutics, 1996).
- 2. The estimated SAS prevalence among diabetics with BMI < 25 suggests obesity is not the sole factor for SAS in diabetics.
- 3. ODI was correlated with number of diabetic complication, fasting insulin and HOMA-IR, suggesting a potential association between SAS and diabetic pathologies.
- 4. Lack of correlation between QOL questionnaire survey results and ODI shows diabetics are unaware of their symptoms even if they have concurrent SAS.
- 5. SAS affects blood glucose control in type 2 diabetics (Gottlieb et al. Arch Intern Med. 2005) and is an independent risk factor for cardiovascular disease (macrovascular disease) (Somers et al. Circulation, 2008).
- 6. Based on the results of this study, we propose to implement it actively screening for SAS in patients with diabetes.
- 7. The significant factors shown in the multivariate analysis, age, male, BMI, heart rate, hypertension and creatinine, are important determinants of candidate diabetics for SAS screening.
- 8. It remains uncertain relationship between diabetes and SAS, therefore we are planning the longitudinal study to reveal it for Japanese patients.

Number of complication 0.11 <0.01 0.18 0.01 0.17 0.03 (without previous insulin therapy) 0.13 <0.01 0.07 0.03

Result

- Patient guestionnaire (SF-36, Beck Depression Inventory, stress check list, Pittsburgh sleep quality index)
- Ratio estimation (95% CI), correlation analysis, multivariate analysis (ex. logistic regression)

Characteristics of the patients

lte m					remaie			
item	N				N			
Age (year)	602	60.6	±	12.3	302	62.7	±	11.5
Duration of diabetes (month)	552	128	±	107	262	119	±	98
Height (Anni)	572	167.4	±	6.4	277	154.0	±	5.7
Weight(kog)	599	70.3	±	13.6	301	61.0	±	12.3
BMI(kag/mrľ)	572	25.0	±	4.3	277	25.6	±	4.7
Systolic BP (mmHg)		132	±	17	300	131	±	16
Diastolic BP (mmHg)		77	±	11	300	74	±	11
Heart rate (bpm)	502	77	±	12	236	78	±	12
Abdominal circumference (cm)	558	88.8	±	10.2	280	86.4	±	12.6
Fasting blood glucose (mg/dL)	314	139	±	47	151	134	±	40
Fasting insulin (µU/mL)	136	8	±	6	54	9	±	4
HbA1c (%)	593	6.9	±	1.2	292	6.9	±	1.1
HOMA-IR (IU/L)*	115	2.8	±	2.1	48	2.9	±	1.6
Creatinine (mg/dL)	583	0.83	±	0.22	291	0.66	±	0.39
3% ODI (/hour)		11	±	11	302	9	±	8
Number of diabetic complication*	*							
0	247				102			
1	123				53			
2	57				38			
3	44				16			
Data of patients without previous in:	insulin therapy				(Mean ± SD)			