

Phase II Study of Cetuximab Rechallenge in Patients with RAS Wild-Type metastatic Colorectal Cancer: E-Rechallenge Trial

H. Osawa¹, E. Shinozaki², M. Nakamura³, Y. Ohhara⁴, Y. Shindo⁵, M. Shiozawa⁶, H. Uetake⁷, H. Matsumoto⁸, N. Ureshino⁹, H. Satake¹⁰, T. Kobayashi¹¹, T. Suto¹², S. Kitano¹³, Y. Ohashi¹⁴, K. Uemura¹⁵, K. Yamaguchi²

Comprehensive Support Project For Oncological Research

481P

¹Dept of Oncology and Hematology, Edogawa Hospital, ²Gastrointestinal Oncology, Cancer Institute Hospital, Dept of Gastroenterology, Sapporo Medical Center, ⁵Gastroenterological Surgery, Nakadori General Hospital, ⁶Gastrointestinal Surgery, Kanagawa Cancer Center, ⁷Specialized Surgeries, Tokyo Medical Oncology, Saga-Ken Medical Center Koseikan, ¹⁰Dept of Medical Oncology, Saga-Ken Medical Center Koseikan, ¹⁰Dept of Medical Oncology, Saga-Ken Medical Center, Tokyo Metropolitan Komagome Hospital, ⁹Medical Oncology, Saga-Ken Medical Center Koseikan, ¹⁰Dept of Medical Oncology, ¹⁰Dept of Medical Oncology, ¹⁰Dept of Medical Oncology, ¹⁰Dept of Medical Center Koseikan, ¹⁰Dept of Medical Oncology, ¹ Kobe City Medical Center General Hospital, ¹¹Dept of Medical Oncology, Kyorin University Faculty of Medicine, ¹²Dept of gastroenterological surgery, Yamagata Prefectural Central Hospital, ¹³Graduate School of Engineering, Osaka University, ¹⁴Integrated Science and Engineering for Sustainable Society, Chuo University, ¹⁵Division of Biostatistics and Bioinformatics, Interfacluty Initiative in Information Studies, The University of Tokyo

Background

Several previous reports indicated that cetuximab (Cmab) rechallenge may be efficacious in patients for whom Cmab was previously effective. On the other hand, some reports did not support this. Considering the plasticity of sensitive clone, we assumed that an anti-EGFR antibody-free interval (aEFI) and efficacy may be correlated. This current study investigates the efficacy and safety of Cmab rechallenge as a salvage chemotherapy.

Study Design

multicenter phase II study

main eligibility criteria

mCRC patients who have become refractory to fluoropyrimidines, L-OHP, CPT-11, Cmab and bevacizumab, and in whom previous treatment with Cmab was effective

- in any earlier line (achieving CR, PR, or SD that persisted for ≥6 months)
- RAS wild-type
- measurable disease

 aEFI ≥16 weeks between the last dose of Cmab during previous treatment and the start of Cmab rechallenge

Protocol treatment: combination of weekly Cmab with biweekly CPT-11.

Primary endpoint: response rate (RR)

Secondary endpoints: progression free survival (PFS), overall survival (OS), association between the aEFI and efficacy, and safety

Statistical considerations: Using a single-stage binominal design, 45 patients were required; a RR of \geq 20% was considered promising, and a RR of \leq 5% unacceptable (one-sided α = 2.5%, β = 10%).

E-Rechalleng-E Trial

Clinical trial identification UMIN 000016439. Legal entity responsible for the study Comprehensive Support Project for Oncological Research. Partially sponsored by Merck Serono.

- New safety information were not identified.

Table1. Patients	Characteristi	cs (n=	- 0/	Table2	2. Respon	se Rate	
age	average (range)	64.4 ((35–78)		n=33	%	95%CI ^{a)}
sex	male	28	84.85	PR	5	15.15	[5.11, 31.90]
	female	5	15.15				
pathology	well	10	30.3	SD	13	39.39	[22.91, 57.86]
	moderately	21	63.64	PD	14	42.42	[25.48, 60.78]
	poorly	2	6.06	NA	1		
primary site	Ascending	1	3.03	a) Clon	per-Pears	on	
	Transverse	3	9.09			011	
	Descending	1	3.03				
	Sigomoid	16	48.48				
	Rectosigmoid	4	12.12	Figure1. Represe	ntative Ca	ase of Re	sponse
	Rectum	2	6.06				-
primary site resection	yes	6	18.18	baseli	ne		rechallenge
	no	7	21.21				
meta site	Liver	26	78.79				
	Lung	18	54.55	19C			19 PA
	Lymphnode	12	36.36				·····
	Peritoneum	7	21.21				RY TON
	Bone	1	3.03		3000	LR	1213000
	others	1	3.03	R			42,100
previous combination	none	1	3.03	6.6			
	FOLFOX	9	27.27	all of	0.0.1		all is a
	FOLFIRI	9	27.27		-		
	IRIS	3	9.09	.5530			
	irrinotecan	10	30.3	The blue circle indica	ates the met	astasis in se	gment 1 of the liver. S
	others	1	3.03	was seen after recha			-
best response	CR	1	3.03				
	PR	26	78.79				
	SD ≧6mo	6	18.18				

Methods

Liquid biopsy research

Additional research of ctDNA was conducted optionally. Blood samples at baseline collected in STRECK BCT[®] tubes (Qiagen)

We performed ddPCR assays on a QX200 digital PCR system (BioRad software (BioRad laboratories).

A mutation was considered positive with more than 0.1% fractional droplets. The uniplex ddPCR method had been optimized beforehand by mutant oligonucleotide.

LBx[®] Probe of *KRAS* G12/G13 Screen (Riken Genesis) LBx[®] Probe KRAS A59/Q61Screen (Riken Genesis) LBx[®] Probe *BRAF* V600 Screen (Riken Genesis) Additionally, we used ddPCR[™] probe *EGFR* S492R as the detection probe for EGFR S492R(c.1474A>C) and S492R (c.1476C>A) (BioRad laboratories).

Results

• Between Dec 2014 and Oct 2017, 33 patients were enrolled. The registration of this trial was halted in Oct 2017 due to insufficient accrual.

• The primary endpoint; the rates of PR/SD/PD (95%CI) were PR 15.2% (5.1-31.9%)/SD 39.4% (22.9-57.9%)/ PD 42.4% (25.5-60.8%).

• Secondary endpoints; median PFS and OS (95%CI) were 88 days (62-113days) and 262 days (195-307days).

There were no statistical significant difference of RR, PFS and OS stratified by median aEFI (311days).

Twenty four patients were enrolled the additional liquid biopsy research which was conducted optionally.

Table3. Response Rate divided by median aEFI

						_
		PR	SD	PD	NA	
aEFI > median	Ν	2	8	5	1	_
	%	12.5	50	31.3	6.25	I
aEFI ≦median	Ν	3	5	9	0	
	%	17.7	29.4	52.9	0	

Shrinkage

Table4. Mutation status of liquid biopsy at baseline (n=24)

Patient number	Response	EGFR S492R	KRAS G12 G13	KARAS A59 Q61	BRA
CRC04-01	SD	WT	WT	WT	
CRC04-02	SD	WT	WT	WT	
CRC04-03	PR	WT	WT	WT	
CRC04-04	SD	WT	WT	WT	
CRC04-05	SD	WT	WT	WT	
CRC04-06	PD	WT	WT	MT	
CRC04-07	PD	WT	WT	WT	
CRC04-08	PD	WT	MT	WT	
CRC04-11	PD	WT	MT	WT	
CRC04-12	SD	WT	MT	MT	
CRC04-13	PD	WT	MT	MT	
CRC04-14	SD	WT	WT	WT	
CRC04-15	SD	WT	WT	MT	
CRC04-17	PD	MT	MT	WT	
CRC04-18	PD	WT	WT	MT	
CRC04-19	PD	WT	WT	WT	
CRC04-20	SD	WT	WT	WT	
CRC04-22	SD	WT	MT	MT	
CRC04-25	SD	MT	WT	WT	
CRC04-26	SD	MT	WT	MT	
CRC04-27	SD	WT	MT	MT	
CRC04-30	PR	WT	WT	WT	
CRC04-32	PD	WT	WT	WT	
CRC04-33	PR	WT	WT	WT	

- DNA was extracted from plasma using the QIAamp Circulating Nucleic Acid Kit
- laboratories) . The PCR data were quantified as copies/µL using QuantaSoft™

- abundance of KRAS c12/c13/A59/Q61, BRAF (V600E) and EGFR S492R mutant comparative analysis of a dilution series of synthetic copies of each indicated

Results of Liquid biopsy research (Table 4 and 5, Figure 4)

Figure 4. Results from ctDNA analysis(n=24)

- a) Waterfall plot
- Spider plot
- c) PFS divided by any mutation of liquid biopsy

Table5. Response Rate divided by Any mutation of liquid biopsy

	ALL (n=24)	All WT (n=12)
ORR	12.50%	25%
DCR	50%	50%
PD	37.50%	25%

By narrowing down all wild type of this liquid biopsy, the response rate was increased from 12.5% to 25%.

Conclusion

Cmab rechallenge showed some activity in the salvage setting, in patients for whom Cmab was previously effective.

KRAS and BRAF screening by liquid biopsy may contribute to identify the patients with benefit from Cmab rechallenge.