



# P2.07A–1252: The Effect of EGFR Mutation on Adjuvant Tegafur/Uracil for Patients with Non-Lymph Node

Metastatic NSCLC (> 2 cm)

T Miyoshi<sup>a</sup>, K Aokage<sup>a</sup>, S Watanabe<sup>b</sup>, H Ito<sup>c</sup>, N Sakakura<sup>d</sup>, M Mun<sup>e</sup>, M Yamashita<sup>f</sup>, Y Ohde<sup>g</sup>, T Aoki<sup>h</sup>, W Nishio<sup>i</sup>, M Taguri<sup>j</sup>, M Tsuboi<sup>a</sup>

<sup>a</sup>Division of Thoracic Surgery, Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, <sup>c</sup>Department of Thoracic Surgery, Kanagawa Cancer Center, Kanagawa, <sup>d</sup>Department of Thoracic Surgery, National Cancer Center Hospital, Tokyo, <sup>c</sup>Department of Thoracic Surgery, National Cancer Center Hospital, Tokyo, <sup>c</sup>Department of Thoracic Surgery, National Cancer Center Hospital, Tokyo, <sup>c</sup>Department of Thoracic Surgery, National Cancer Center Hospital, Tokyo, <sup>c</sup>Department of Thoracic Surgery, National Cancer Center Hospital, Tokyo, <sup>c</sup>Department of Thoracic Surgery, National Cancer Center Hospital, Tokyo, <sup>c</sup>Department of Thoracic Surgery, National Cancer Center Hospital, Tokyo, <sup>c</sup>Department of Thoracic Surgery, National Cancer Center Hospital, Tokyo, <sup>c</sup>Department of Thoracic Surgery, National Cancer Center Hospital, Tokyo, <sup>c</sup>Department of Thoracic Surgery, National Cancer Center Hospital, Tokyo, <sup>c</sup>Department of Thoracic Surgery, National Cancer Center Hospital, Tokyo, <sup>c</sup>Department of Thoracic Surgery, National Cancer Center Hospital, Tokyo, <sup>c</sup>Department of Thoracic Surgery, National Cancer Center Hospital, Tokyo, <sup>c</sup>Department of Thoracic Surgery, National Cancer Center Hospital, Tokyo, <sup>c</sup>Department of Thoracic Surgery, National Cancer Center Hospital, Tokyo, <sup>c</sup>Department of Thoracic Surgery, National Cancer Center Hospital, National Cancer Ce Aichi Cancer Center Hospital, Nagoya, eDepartment of Thoracic Surgical Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, fDepartment of Thoracic Surgery, Shikoku Cancer Center, Ehime, gDivision of thoracic Surgery, Shizuoka Cancer Center Hospital, Shizuoka, hDepartment of Chest Surgery, Niigata Cancer Center Hospital, Niigata, Department of Chest Surgery, Hyogo Cancer Center, Hyogo, Department of Health Data Science, Tokyo Medical University, Tokyo, Japan

Correspondence: tmiyoshi@east.ncc.go.jp

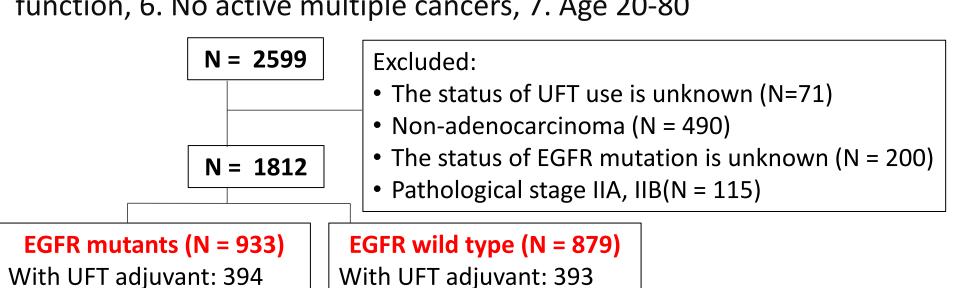
# 50 IASLC **2024 World Conference** on Lung Cancer **SEPTEMBER 7-10, 2024** SAN DIEGO. CA USA

## INTRODUCTION

#### <BACKGROUNDS>

- The ADAURA trial demonstrated the significant efficacy of osimertinib regarding DFS and OS in patients with stages IB-IIIA (TNM 7th) EGFR mutant NSCLC.<sup>1-3</sup>
- Japanese patients with stage IB (> 3 cm), for whom oral UFT was the standard adjuvant treatment, were not enrolled in the ADAURA trial which used a placebo control.
- In the future, osimertinib may compete with oral UFT for non-lymph node metastatic NSCLC (> 2 cm) in Japan, but there are few reports on the therapeutic efficacy of UFT in lung cancer with EGFR mutations.

#### <PURPOSE>


Without UFT adjuvant: 539

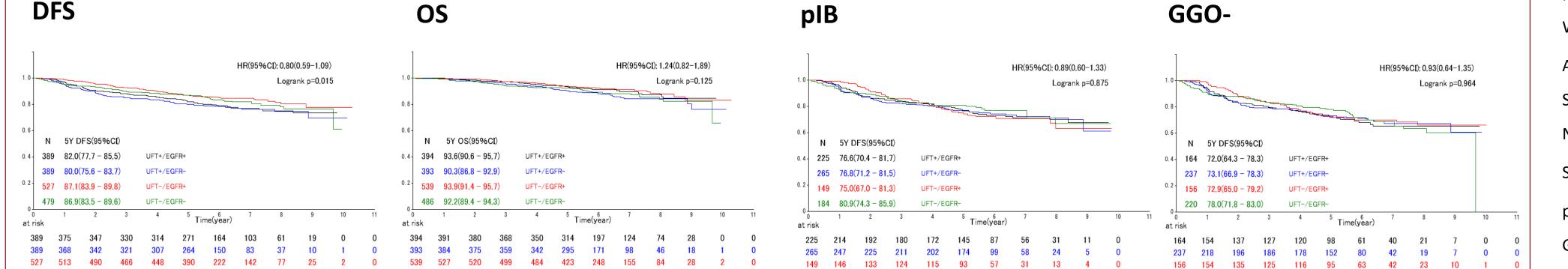
 To elucidate the effect of EGFR mutations on adjuvant chemotherapy with UFT as an exploratory analysis of CSPOR-LC03 study.

# PATIENTS & METHODS

CSPOR-LC03: a large-scale, retrospective, multicenter observational study conducted to understand Japanese real-world data on adjuvant chemotherapy between 2008 and 2013.4

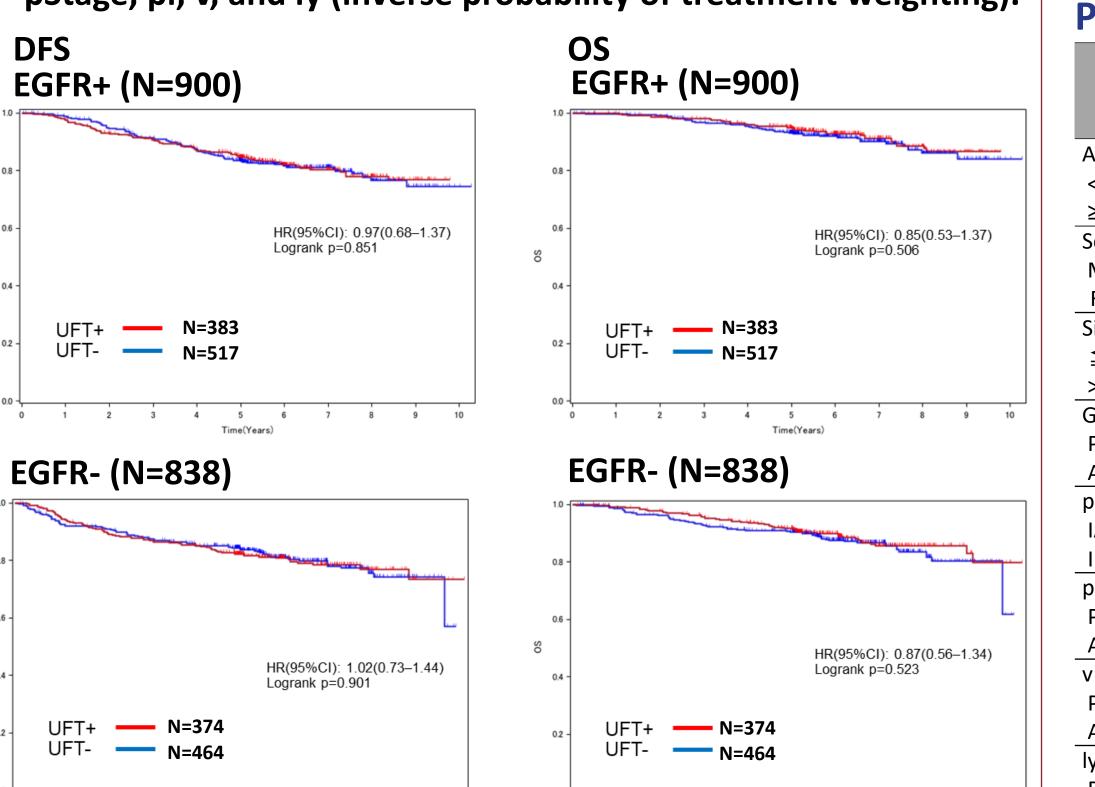
<CRITERIA> 1. Pathological stage I (T1>2 cm, TNM 6th), 2. Lobectomy and R0 resection, 3. No prior treatment, 4. PS 0-1, 5. Adequate organ function, 6. No active multiple cancers, 7. Age 20-80




- The primary endpoint: 5-year disease-free survival (DFS) rate
- Survival comparison in the four groups (UFT+/EGFR+, UFT+/EGFR-, UFT-/EGFR+, and UFT-/EGFR-)
- Identifying prognostic factors using a Cox proportional hazards model

Without UFT adjuvant: 486

## **RESULTS**


### Survival The median duration of follow-up: 5.8 years (interquartile range: 5.0–7.1 years)

All patients DFS of high-risk subgroups



Adjusted by age, sex, lymph node dissection, tumor size, GGO component,

pStage, pl, v, and ly (inverse probability of treatment weighting).



## **Patient characteristics**

|             | EC          | <b>GFR mutant</b> |                 | EGFR wild type |             |          |  |
|-------------|-------------|-------------------|-----------------|----------------|-------------|----------|--|
|             | UFT+        | UFT-              |                 | UFT+           | UFT-        |          |  |
|             | n = 394 (%) | n = 539 (%)       | P value         | n = 393 (%)    | n = 486 (%) | P value  |  |
| Age         |             |                   |                 |                |             |          |  |
| < 70        | 273 (63)    | 322 (60)          | 0.002           | 275 (70)       | 272 (56)    | < 0.0001 |  |
| ≥ 70        | 121 (37)    | 217 (40)          | 0.003           | 118 (30)       | 214 (44)    |          |  |
| Sex         |             |                   |                 |                |             |          |  |
| Male        | 147 (37)    | 176 (33)          | 0.14            | 235 (60)       | 273 (56)    | 0.28     |  |
| Female      | 247 (63)    | 363 (67)          | 0.14            | 158 (40)       | 213 (44)    |          |  |
| Size (cm)   |             |                   |                 |                |             |          |  |
| $\leq$ 3 cm | 190 (48)    | 383 (71)          | < 0.0001        | 163 (42)       | 313 (64)    | < 0.0001 |  |
| > 3 cm      | 204 (52)    | 156 (29)          | < 0.0001        | 230 (59)       | 173 (36)    |          |  |
| GGO         |             |                   |                 |                |             |          |  |
| Present     | 228 (58)    | 378 (70)          | 0.0001          | 155 (39)       | 261 (54)    | 0.0001   |  |
| Absent      | 166 (42)    | 161 (30)          | 0.0001          | 238 (61)       | 173 (46)    | 0.0001   |  |
| pStage      |             |                   |                 |                |             |          |  |
| IA          | 167 (42)    | 388 (72)          | < 0.0001        | 127 (32)       | 299 (62)    | < 0.0001 |  |
| IB          | 227 (58)    | 151 (28)          | < 0.0001        | 266 (68)       | 187 (39)    |          |  |
| pl          |             |                   |                 |                |             |          |  |
| Present     | 96 (25)     | 67 (13)           | < 0.0001        | 114 (31)       | 72 (16)     | < 0.0001 |  |
| Absent      | 298 (75)    | 472 (87)          | < 0.0001        | 279 (69)       | 414 (84)    |          |  |
| V           |             |                   |                 |                |             |          |  |
| Present     | 114 (30)    | 91 (18)           | < 0.0001        | 142 (38)       | 127 (27)    | 0.001    |  |
| Absent      | 280 (70)    | 448 (82)          | <b>\ 0.0001</b> | 251 (62)       | 359 (63)    | 0.001    |  |
| ly          |             |                   |                 |                |             |          |  |
| Present     | 84 (22)     | 78 (15)           | 0.008           | 65 (17)        | 84 (18)     | 0.79     |  |
| Absent      | 310 (78)    | 461 (85)          | 0.000           | 328 (83)       | 402 (82)    |          |  |

EGED wild type

#### **Risk factors for DFS**

|                         |                  | Univariable         |          | Multivariable       |         |  |
|-------------------------|------------------|---------------------|----------|---------------------|---------|--|
| Variable                | Ref              | HR (95% CI)         | P value  | HR (95% CI)         | P value |  |
| EGFR mutation, Positive | Negative         | 0.889 (0.716–1.105) | 0.29     | 1.171 (0.926–1.481) | 0.19    |  |
| With UFT                | Without<br>UFT   | 1.404 (1.130–1.744) | 0.002    | 0.987 (0.778–1.252) | 0.91    |  |
| Age, ≥ 70               | < 70             | 1.183 (0.952–1.469) | 0.13     | 1.021 (0.810-1.288) | 0.86    |  |
| Sex, Male               | Female           | 1.400 (1.125–1.743) | 0.003    | 1.333 (1.060–1.677) | 0.014   |  |
| ND, ND2a-2              | ND2a-1           | 1.216 (0.978–1.511) | 0.078    | 1.100 (0.877–1.380) | 0.41    |  |
| Size, cm                | 1 cm<br>increase | 1.460 (1.262–1.689) | < 0.0001 | 1.145 (0.960–1.365) | 0.13    |  |
| pStage, IB              | IA               | 2.379 (1.899–2.981) | < 0.0001 | 1.287 (0.917–1.805) | 0.14    |  |
| GGO, Present            | Absent           | 0.284 (0.224–0.360) | < 0.0001 | 0.436 (0.334–0.568) | < 0.000 |  |
| pl, Present             | Absent           | 3.295 (2.625-4.135) | < 0.0001 | 1.538 (1.151-2.053) | 0.004   |  |
| v, Present              | Absent           | 4.002 (3.199-5.007) | < 0.0001 | 2.173 (1.665-2.836) | < 0.000 |  |
| ly, Present             | Absent           | 2.592 (2.039-3.295) | < 0.0001 | 1.371 (1.057-1.779) | 0.017   |  |

## DISCUSSION & CONCLUSION

- The benefit of adjuvant UFT on DFS and OS may be limited, regardless of the EGFR mutation.
- Univariable analysis of DFS revealed a worse prognosis in the UFT+ group than in the UFT- group. This was ascribed to a selection bias that UFT was preferentially administered to patients with an elevated risk of recurrence.

#### <CONCLUSION>

In pathologic stage I (>2 cm) lung adenocarcinomas with EGFR mutation, the survival benefit of adjuvant UFT was not observed.

#### REFERENCES & ACKNOWLEDGEMENTS

- 1. Wu YL, et al. NEJM. 2020, 2. Herbst RS, et al. JCO, 2023
- 3. Tsuboi M, et al. NEJM. 2023, 4. Shukuya T, et al. JTOCRR. 2022 This work was supported by AstraZeneca K.K. [ESR-21-21264]